Linux Kernel Hacking Free Course
3" edition

G.Grilli, University of Rome “Tor Vergata”

IRQ DISTRIBUTION IN
MULTIPROCESSOR SYSTEMS

April 05, 2006 IRQ distribution in multiprocessor systems

Linux Kernel Hacking Free Course - 3" edition

Contents:

@ What is an interrupt

Synchronous and asynchronous interrupts
Interrupts in uniprocessor and smp achitectures

The advanced programmable interrupt controller (APIC)

Q IRQs' distribution problem starting with Intel® Pentium 4 architecture

Negative impact on massively parallel applications

6 An experimental kernel with a new irq balancing capability

@ Hint: using smp_affinity() to bind irq lines to specific processors

April 05, 2006 IRQ distribution in multiprocessor systems 2

Linux Kernel Hacking Free Course - 3" edition

What is an interrupt?

m=) An interrupt is defined as an event that alters the sequence of instructions
executed by a processor.

==) Such events correspond to electrical signals generated by hardware circuits
both inside and outside the CPU chip.

==) |nterrupts are often divided into “synchronous’ and “asynchronous’
interrupts

April 05, 2006 IRQ distribution in multiprocessor systems 3

Linux Kernel Hacking Free Course - 3" edition

Interrupts and Exceptions (Intel® classification)

synchronous interrupts (“interrupts”™)

They are produced by the CPU control unit (CU) while executing instructions.
“Synchronous” because the CU issues them only after terminating the execution of an
instruction (programming errors or anomalous conditions).

asynchronous interrupts (“exceptions”)

They are generated by other hardware devices at arbitrary times with respect to the
CPU clock signals (interval timers and 1/O devices).

April 05, 2006 IRQ distribution in multiprocessor systems

Linux Kernel Hacking Free Course - 3“ edition

Interrupts (overview schema)

main memory processor

data bus, addresses and control

I/O controller I/O controller I/O controller I/O controller

Network Card Keyboard

April 05, 2006 IRQ distribution in multiprocessor systems 5

Linux Kernel Hacking Free Course - 3" edition

Interrupts — uniprocessor scenario (1)

disk drive
disk
CPU Interrupt
controller controller

A

|
|
| |
EEEEEEEEEEEEEEEEEEEERN®

Phase 1: CPU asks the disk controller to perform some operations

April 05, 2006 IRQ distribution in multiprocessor systems

Linux Kernel Hacking Free Course - 3" edition

Interrupts — uniprocessor scenario (2)

disk drive
CPU Interrupt disk
controller controller
A i
|
- [|
B EEEEEEEEN

Phase 2: the disk controller has completes its task and raises an interrupt on the bus
using a specific irq line.

April 05, 2006 IRQ distribution in multiprocessor systems

Linux Kernel Hacking Free Course - 3" edition

Interrupts — uniprocessor scenario (3)

disk drive
¢ Interrupt disk
CPU controller controller

v

Phase 3: the interrupt controller sets the interrupt signal to be handled by the cpu

Phase 4: the interrupt controller sends on the bus the number which identifies the device
raising the interrupt

April 05, 2006 IRQ distribution in multiprocessor systems

Linux Kernel Hacking Free Course - 3" edition

Interrupts — uniprocessor scenario (4)

next instruction

LT .« » ‘@ current instruction
0“
- Interrupt disk y
e controller controller :'
‘ . interrupt vector
'-" Interrupt
< handler
eha NEER 2

Phase 5:the CPU receiving the interrupt request changes the current instructions' flow

by jumping to the proper interrupt handler

April 05, 2006 IRQ distribution in multiprocessor systems

Linux Kernel Hacking Free Course - 3“ edition

Symmetrical MultiProcessing architecture (SMP)

Address Bus
bus bus bus
lock lock lock
Processorj Processor . . Processor
1 2 N
bus bus bus
lock lock lock

Data Bus

April 05, 2006 IRQ distribution in multiprocessor systems

10

Linux Kernel Hacking Free Course - 3" edition

The Advanced Programmable Interrupt Controller (APIC) - (1)

In order to deliver interrupts to each CPU in the system (granting the parallelism of a
smp architecture), Intel® introduced starting from Pentium Ill a new component, the
/O APIC.

In multiprocessor systems based on 80x86 architecture, each processor includes a
local APIC.

Each local APIC has 32 bit registers, an internal clock, a local timer device and two
additional IRQ lines (LINTO and LINT1) reserved for local APIC interrupts.

April 05, 2006 IRQ distribution in multiprocessor systems

11

Linux Kernel Hacking Free Course - 3" edition

The Advanced Programmable Interrupt Controller (APIC) - (2)

The 1/O APIC consists of a set of 24 IRQ lines, a 24-entry Interrupt Redirection Table,
programmable registers and a message unit for sending and receiving APIC
messages over the APIC bus.

Any entry in the redirection table can be individually programmed to indicate the
interrupt vector and priority, the destination processor and how the processor is
selected.

Generally speaking, the 1/O APIC acts like an “IRQ router” with respect to the Local
APICs.

April 05, 2006 IRQ distribution in multiprocessor systems

12

Linux Kernel Hacking Free Course - 3" edition

APIC Overview in a quad processor architecture

backside cache backside cache

backside cache backside cache

CPU #1

CPU #2 CPU #3

CPU #0

Local APIC

APIC bus I/O-APIC

- ‘: PCI bus : S|Ots
I‘ambank llllllllllll“"
HOST BRIDGE

* starting from Pentium IV, the APIC bus has been replaced by the
system bus

April 05, 2006 IRQ distribution in multiprocessor systems

13

Linux Kernel Hacking Free Course - 3" edition

How the I/O APIC ditributes irqs among the CPUs

Static distribution

The /O APIC sends the IRQ signal according to the redirection table. The interrupt can be
delivered to one specific CPU, to a subset of CPUs, or to all CPUs at once (broadcast mode).

Dynamic distribution

The IRQ signal is delivered to the local APIC of the processor that is executing the process
with the lowest priority.

The 1/0 APIC consists of a set of 24 IRQ lines, a 24-entry Interrupt Redirection Table,
programmable registers and a message unit for sending and receiving APIC messages over
the APIC bus.

April 05, 2006 IRQ distribution in multiprocessor systems 14

Linux Kernel Hacking Free Course - 3“ edition

How the I/0 APIC ditributes irqs among the CPUs - (cont.)

Every Local APIC has a programmable task priority register (TPR), which is used to compute
the priority of the currently running process. Intel expects this register to be modified in an
operating system kernel at every task switch.

If two or more CPUs share the lowest priority, the load is distributed between them using the
arbitration technique:

mm) each CPU has an arbitration priority ranging from 0 to 15 (highest)

mm) everytime an interrupt is delivered to a CPU, its priority is set to 0 while the priority
of the other CPUs is increased by 1

=) when the arbitration priority register becomes greater than 15, it is set to the
previous arbitration priority of the winning CPU increased by 1

April 05, 2006 IRQ distribution in multiprocessor systems

15

Linux Kernel Hacking Free Course - 3" edition

Problems start with Intel® Pentium 4 processor family

The Pentium 4 local Apic doesn't have an arbitration priority register and the
mechanism is hidden in the bus arbitration circuitry

. !

If the Operating System kernel does not regularly update the TPRs,
performance may be suboptimal because interrupts might always be served

by the same CPU!
N

[Integrating this mechanism inside the kernel can be a critical task]

/

April 05, 2006 IRQ distribution in multiprocessor systems

16

Linux Kernel Hacking Free Course - 3" edition

The impact of load imbalance in massively parallel applications

In massively parallel application the delay in a job execution slows down the entire
calculus due to a synchronization phase.

Ideal case: Real case:
1 2 1: 34 1 2 : i 3
cPu#0) TD: | cPuso) TD: .
u u LI E L] L] : u u
) 10 sec : : ¢ : 12sec
CPU#1) : : - : CPU#)
CPU#2) : CPU#2
cPU#3) : CPU#3

April 05, 2006 IRQ distribution in multiprocessor systems

Linux Kernel Hacking Free Course - 3" edition

The current kernel implementation

m=) Developed and submitted by Nitin Kamble (Intel® Corporation)

mm) |ntegrated into the kernel starting from version 2.5.52 as a kernel thread
named “irqd”

Problems related to this mechanism:

P IRQs are not migrated if the interrupt rate is below an high
treshold (usually, hundreds of interrupts per second)

Even when the threshold is reached, irg balancing is suboptimal
(see the next slide)

April 05, 2006 IRQ distribution in multiprocessor systems

18

Linux Kernel Hacking Free Course - 3" edition

Example of bad irq distribution even under heavy irq load
7 A

#10 ping flooding]

Irq frequence:~ 65 KHz

[@OV ER: }
#4 disk interrupt generators
Irq frequence:~ 260 Hz [[RQ@#29)(SCS]) }

\ Y,
“THOR’ - quad Intel® Xeon 1.5GHz, 4GB RAM, [
ROO)NIC) }

NIC 10/100 Mbps, Linux kernel 2.6.4

\.

_

April 05, 2006 IRQ distribution in multiprocessor systems 19

Linux Kernel Hacking Free Course - 3" edition

New irq distribution mechanism (experimental)

© Implemented as kernel thread in Linux kernel 2.6.4

Intel Hyperthreading technology aware (physical CPU is seen by the operating
system as a couple of logical CPUs).

find out the most and the least loaded CPU.

An heuristic function is used in order to evaluate the cpu load related to irg
traffic. This function checks both the interrupt requests raised till the last thread
execution and the global ones, raised from the mechanism'’s startup time.

O
O At every execution, the kernel thread updates the data structures and tries to
O

@) If the most loaded CPU has “N” irq lines, the kernel thread tries to migrate the
first “N/2 + 17 lines to the least loaded CPU.

April 05, 2006 IRQ distribution in multiprocessor systems

20

Linux Kemel Hacking Free Course - 3" edition

Algorithm example - (1)

CPU#1 CPU#2 CPU#3

v

A 4

A 4

A 4

v

() () [

High rate IRQ Low ratelRQ Unassigned IRQ

April 05, 2006 IRQ distribution in multiprocessor systems 21

Linux Kernel Hacking Free Course - 3“ edition

Algorithm example - (2)
CPU#2 CPU#3
High rate IRQ Low ratelRQ Unassigned IRQ

April 05, 2006 IRQ distribution in multiprocessor systems 22

Linux Kernel Hacking Free Course - 3“ edition

Algorithm example - (3)
CPU#3
>
High rate IRQ Low ratelRQ Unassigned IRQ

April 05, 2006 IRQ distribution in multiprocessor systems 23

Linux Kernel Hacking Free Course - 3“ edition

Algorithm example - (4)

IROS
L
.
L
L
L
e
-

() () [

High rate IRQ Low ratelRQ Unassigned IRQ

April 05, 2006 IRQ distribution in multiprocessor systems

24

Linux Kernel Hacking Free Course - 3" edition

The new data structure

ppl_unit
e Y Y Y Y Y ‘rnext \
S . . .
é/
§ A A S\, A S \ J
[ppl_unit]
| ppl_unit

There are no static data structures...is it better?
(give a look to the gcc prefetch capability, lesson 8) PR _

April 05, 2006 IRQ distribution in multiprocessor systems

Linux Kernel Hacking Free Course - 3" edition

Irq distribution in kernel 2.6.4

Irq lines are binded to CPU0

' _I tl HI

Session Editg¥iew Bookmarks Settings Help

root@thon cat /proc/interrupts @
r’ CPUD CPUL CPU2 CPU3 CPU4 CPUS CPUB CRUT
1] 7214360 0] 1] 0] 1] 1] 1] 0] I0-APIC-edge timer
1 1775 1] 1] 1] 1] 1] 1] 0] I0-APIC-edge 18042
2. 4] 7] B g 4] 7] B 3] XT-PIC cascade
8. 1 0 1] 7] 0 0 1] 7] I0-APIC-edge ric
12: 6056 0]]] 0]] I0-APIC-edge 18042
14: 15 1] 1] 1] 1] 1] 1] 1] I0-APIC-edge 1def
| 26: 0 0 0 0 0 0 0 @ ID-APIC-level ohci hcd
28: 38 0 0 0 0 0 0 0 IO0-APIC-level aic7xxx
29: 6573 0 0 0 0 0 0 O IO0-APIC-level ailc7xxx
30 188253 1] 1] 1] 1] 1] 0] 4] I0-APIC-level eth@
MMI : 1] 1] 1] B 1] 1] 1] B
ALOC: 7214321 7214320 7214319 7214318 7214317 7214316 7214315 7214314

ERR: 0

MIS: 0
root@thor: ~# [

A= | il Shell

April 05, 2006 IRQ distribution in multiprocessor systems 26

Linux Kernel Hacking Free Course - 3" edition

Irq distribution in kernel 2.6.4irqd

Irq lines are distributed among the cpus sibling cpus (hyperthreading enabled)

shell ST Ronsole

S
Session Edit View Bookmarks Setti
root@thor:~# cat /proc/interrupts @
CPUD CPUT CPUZ CPU3 CPUS CPUG
0 2491529 2440509 2509909 2495530 0 0 0 0 I0-APIC-edge timer
1 A3l 482 544 506 0 0 0 0 I0-APIC-edge 18042
2. 0 B] B] 0]] 0] AT-PIC cascade
8: 1] 1]]] 0] 1] 0] I0-APIC-edge rtc
12: 12230 19026 11781 14186 1] 0] 0] I0-APIC-edge 18042
14; 15]]]] 0] 1]] I0-APIC-edge 1ded
26: 0 0 0 0 0 0 0 O JIO0-APIC-level ohci_hcd
28: 1 37 0 3] 3] 4] 3] @ JI0-APIC-level ailcTxxx
29; 915 3588 2602 17495] 0] 1] 0] I0-APIC-level alcTxxx
30 73697 73856 73482 73621] 0]] 0] I0-APIC-level eth®e
MI: 1] 0] 1] 0]] 0]] 0]
C: 0936205 9930204 9936203 9936202 936201 9936200 0936199 0936198 4
ERR: 1]
MIS: 1]
IROD Kernel Running!-
root@thor: ~# | E
~~ | Shell

April 05, 2006 IRQ distribution in multiprocessor systems 27

Linux Kernel Hacking Free Course - 3" edition

Benchmarks results for kernel 2.6.4 and 2.6.4irqd (ad-hoc mpp benchmark)

114,240 | 95,890

Execution times 1 ping flooding 80940 | 95 573 Execution times 3 ping flooding

| | | | 1 | | | |

Ro | W
w1l #ﬁ 88'744 95,560 Ro
Ro w W
Ro . 88,220 | 94,457 22
nw 3 # Yro #
URo 87,539 | 92,518 B
$\|;v4 # &24 #
Sro | 86,745 | 92,139 S #
©Ro afto
;;VOG # 85,113 89,632 ‘é"ﬁ #
w7# 85,970 86,557 Ro#

ws m w #
\ \ \ \ 1] 28 | \ \ \
0.000 25.000 50.000 75.000 100.000 125.0 ! 0.000 25000 50.000 75.000 100.000 125.0
execution time execution time
Execution times 5 ping flooding A

] 1 N I | | |
\ #)
100,290 | 90,280 i 100,204 | 92,426
! ! w ﬁ
91,3821189,9 11 : e ——— 89,894 || 91.456
0
89,080 | 89,278 i3 e — il Rl
14
89,883 | 89,002 g e ——— 88,657 | 89,745
' ' aRo

88,180 | 88,715 i 87,513 | 89,654

Kernel 2.6.4 87,844 | 88,358 R # 86,673 | 89,440
. Kernel 26.4irqd 84.781 | 87,254 v # 86,044 | 88,972
0.000 25.000 50.000 75.000 100.000 125.0 83,721 88,270

——

83,794 | 87,020 execution time

April 05, 2006 IRQ distribution in multiprocessor systems

Linux Kernel Hacking Free Course - 3" edition

Hint: the smp_affinity() utility

m=) The smp affinity() is used to assign IRQs to specific processors (or
groups of processors)

m=) |t allows you to control how your system will respond to various hardware events
m=) |n this way you can easily redistribute the work load related to I/O devices

mm) started by Ingo Molnar in kernel 2.4

m=) some more informations related to SMP IRQ AFFINITY mechanism can be

found here:
/usr/src/linux-2.X.X/Documentation/IRQ-affinity.txt

April 05, 2006 IRQ distribution in multiprocessor systems 29

Linux Kernel Hacking Free Course - 3" edition

Hint: the smp_affinity() - example (1)

The number held in the "smp_affinity" file is presented in hexadecimal format and
represents which processors any interrupts on certain irq line should be routed to.

[root@thor]# cat /proc/irq/30/smp affinity
ffffffff

- -
- -y,
- =~y

11111111111 1111 1111 1111 1111 1111

“0” means: “the cpu cannot handle the irg#30”

“1” means: “the cpu can handle the irg#30” @

—— > Inthis case, every cpu is allowed to handle the irq#30”

April 05, 2006 IRQ distribution in multiprocessor systems 30

Linux Kernel Hacking Free Course - 3" edition

Hint: the smp_affinity() - example (2)

Let's try to change the value stored in the smp_affinity bitmask in order to allow only
cpu#0 to handle irg#30:

[root@archimedes /procl# cat /proc/irq/30/smp affinity

00000001 \

—-
-
-

[root@archimedes /proc]# echo 1 > /proc/irq/30/smp affinity

000000071 o
0000 0000 0000 0000 0000 0000 0000 0001

— > Now only CPU#0 is allowed to handle the irg#30”

April 05, 2006 IRQ distribution in multiprocessor systems 31

