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Abstract

Checkpoint/restart is a general idea for which par-
ticular implementations enable various functionalities
in computer systems, including process migration, gang
scheduling, hibernation, and fault tolerance. For fault
tolerance, in current practice, implementations can be
at user-level or system-level. User-level implementations
suffer from a lack of transparency, flexibility, and effi-
ciency, and in particular are unsuitable for the autonomic
(self-managing) computing systems envisioned as the next
revolutionary development in system management. In
contrast, a system-level implementation can exhibit all
of these desirable features, and is seen as an essential
mechanism for the next generation of fault tolerant—and
ultimately autonomic—large-scale computing systems.
Linux is becoming the operating system of choice for the
largest-scale machines, but development of system-level
checkpoint/restart mechanisms for Linux is still in its
infancy, with all extant implementations exhibiting serious
deficiencies for achieving transparent fault tolerance. This
paper provides a survey of extant implementations in a
natural taxonomy, highlighting their strengths and inherent
weaknesses.

Keywords: Fault tolerance, checkpoint/restart, autonomic
computing, Linux.

1 Introduction

Checkpointing refers to the action of recording the state
of a computational process such the process could be
restarted at the point of progress represented by this state.
Checkpointing, in various forms, is useful for process mi-
gration (e.g. for load balancing), gang scheduling, ‘hiber-
nation’ (to preserve an entire machine state across power-
downs), or ‘suspension’ (as implemented in the commer-
cial virtual machine software VMware (tm) Workstation,

to save memory space or to allow rolling back to known
states), and as a mechanism for enabling fault tolerance.

The need for fault tolerance in the largest-scale current
and proposed parallel computers is becoming critically im-
portant. Such machines are built primarily for capability
computing, that is, with the intention of dedicating all or
most of the computational capacity to a single application
at any given time. For scientific computing, such applica-
tions may run for days, weeks, or longer until completion;
examples include the US DOE ASC codes [2] among in-
numerable others. However, because of the extraordinarily
large component count of such machines— for instance,
the IBM’s BlueGene/L supercomputer currently under con-
struction will have 65,536 nodes— their mean time be-
tween failures (MTBF) may be orders of magnitude shorter
than the execution times of the applications they are in-
tended to run [1]. The current state of practice with such
systems is that in the absence of some mechanism for fault
tolerance a component failure is catastrophic for the run-
ning application; it is all-too-common practice to run an
application, or a part of it, many times to achieve one suc-
cessful completion.

In this scenario checkpoint/restart mechanisms are ad-
vocated as a straightforward solution for providing fault
tolerance. They are based on periodically saving the pro-
cess state to stable storage so that in the event of a fail-
ure the application can be restarted, on a functioning set of
nodes, at the point of the most recent checkpoint. These
mechanisms are quite promising assuming fail-stop seman-
tics [33] where faults can always be detected—a reasonable
assumption in practice.

Additionally, it is implicit in the goals of proposed au-
tonomic computing systems [14]—systems that are self-
managing—that a checkpoint/restart mechanism be com-
pletely an autonomous entity in the system that is capable of
managing their internal behavior in accordance with poli-
cies that users or other elements have established. Thus,
checkpoint/restart operations must be completely transpar-
ent to the application programmer and application user—
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the application source code need not be modified, recom-
piled, or relinked—, and be capable of automatic- and user-
initiation of the checkpoint/restart operations. Such a sys-
tem would exhibit desirable flexibility by allowing to take
checkpoints at any time during the execution of the appli-
cation. Per example, automatic-initiation checkpoints trig-
gered by a timer that periodically checkpoints applications,
or implementing more complex self-managing functions
such as adjustment of the checkpoint interval to the failure
rate of the system or safe pre-emption by another process.
Moreover, per example, this entity should interact with the
system administrator to carry out some user-initiated tasks
such as temporary suspension of a long-running application
for planned system outage or maintenance.

In simplest form checkpointing saves the entire state
of a process. Incremental checkpointing [27] is a well-
known technique for reducing the overhead of this strategy
wherein only that part of a process’s state that has changed
since the last checkpoint operation is saved. Optimization
is achieved when the size of the delta—the subset of the ap-
plication’s memory that changed since the last checkpoint
operation—is small compared to its entire memory. The
page protection mechanism implemented in virtual mem-
ory systems is commonly used to keep track of the modi-
fications to the process state, so changes in the application
memory are traced at the page granularity. This technique
has been recently evaluated at user-level, specifically in the
context of current hardware performance (specifically that
of the current bottlenecks, namely I/O bus, disk, and in-
terconnection network) [31]. Experimental results showed
that the reduction in the size of the checkpoint data depends
strongly on the application, but for most relevant scientific
applications current hardware is adequate to provide feasi-
ble (efficient) solutions. To the best of our knowledge, this
technique has been seldom implemented for Linux at user-
level, and never before at the operating system-level. As
will be discussed, a system-level implementation allows a
number of essential advantages over user-level implemen-
tation.

The primary contribution of this paper is to provide a
comprehensive survey of existing checkpoint/restart mech-
anisms in a natural taxonomy that exposes the fundamental
reasons for their potential strengths and unavoidable weak-
nesses, and in so doing arguing that a particular subspace of
the taxonomy represents the most desirable are for further
development.

The remainder of this paper is organized as follows. Sec-
tion 2 describes a useful taxonomy for implementations.
Sections 3 and 4 analyzes current user- and system-level
checkpoint/restart mechanisms, respectively. Section 5
concludes.

2 Checkpoint/Restart Implementations

Checkpoint/restart mechanisms can be roughly classifi-
cated along three dimensions: the context, the agent that
provides the checkpoint/restart functionality, and particular

specifics of implementation. To illustrate this classification,
Figure 1 depicts the space of checkpoint/restart implemen-
tations. In the coarsest dimension, context, an implementa-
tion may be user-level or system-level.

A user-level implementations may be directly pro-
grammed in the application’s source code by the user or
automatically by a pre-compiler. Usually in these cases
a specific checkpointing library provides the necessary
checkpoint/restart primitives, eliminating the need to di-
rectly program them. Alternatively, instead of modifying
the source code of the application the checkpoint/restart
primitives may be invoked by signal handlers defined
at user-level. Another implementation is based on the
LD−PRELOAD environment variable which installs the
signal handlers and loads the checkpoint library without re-
compiling again the application.

In contrast, system-level implementations may be in the
operating system or in hardware. In the operating-system
there are various techniques for implementing the check-
point/restart mechanisms: as a kernel-mode signal handler,
system call, or kernel thread. In principle the classification
may not be entirely clear-cut, but in practice the taxonomy
is useful.

3 User-level Implementations

As has been discussed in detail elsewhere [31], imple-
mentations at user-level suffer from lack of transparency
because the application needs to be modified and recom-
piled, or relinked against a checkpoint library. However,
the upside of these schemes is that the implementation is
much easier than directly program the kernel source code,
and more portable than a system-level implementation.
Some representative examples are libckpt [27], libckp [38],
Thckpt [39], Esky [15], and Condor [21] to checkpoint
simple single-threaded processes; libtckpt [10] for mul-
tithreaded processes; and the Pittsburgh Supercomputing
Center’s checkpoint library [35], PM2 [37], Dynamite [19],
CoCheck [28], CLIP [7], and CCIFT [4] for parallel appli-
cations. Most of them are automatic-initiated at user-level
because the application itself is periodically checkpointed
when some checkpoint calls are executed. Therefore, the
lack of flexibility is a principal concern on these implemen-
tations. On the other hand, only a few of these implement
automatic-initiated at system-level, and implement incre-
mental checkpointing.

A common scheme is to install a signal handler for a
default signal offered by the kernel to automatic-initiate
the checkpoint operations at system-level. The signal han-
dlers are defined at user-level and invoked by the ker-
nel. This signal can be triggered by a timer that peri-
odically interrupts the application through the default sig-
nal SIGALARM to initiate checkpointing; libckpt and Esky
use this approach. Others, like Condor, may use some
general purpose signals such as SIGUSR1, SIGUSR2, and
SIGUNUSED. Although, they were primary designed for
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Figure 1. Classification of the checkpoint/restart implementations.

automatic-initiation, user-initiated operations can be im-
plemented by sending the corresponding signal via the kill
command line. Unfortunately these solutions are not gen-
eral because in many cases signal handlers interfere with
the application or the resource manager. Another prob-
lem inherent with checkpointing in user space is efficiency:
it entails much context switching between user and ker-
nel modes because of the number of system calls that
are invoked to extract from the kernel certain information
about the process’s state. Although, the context switch-
ing has been quite optimized for Linux [20], it still rep-
resents a more cost solution than directly accessing some
kernel structures because most CPU’s registers must be
saved/restored every time a system call is performed. For
example, in Linux the sbrk(0) system call is used to extract
the heap boundaries, lseek() is used to extract the position-
ing offset for files, and sigispending() is used to extract the
signals pending on the process, while all this information is
directly accessible in the kernel process’s state structure.

Even worse is the fact that some kernel data structures
embodying process state are inaccessible from user-level.
Short of making extensive kernel modifications, it is neces-
sary to replicate these structures in the user space by inter-
cepting system calls, for example mmap() and unmmap()
to trace the dynamic memory, dlopen() to trace the dy-
namic shared libraries, and open() or dup() to extract file
attributes. This approach is extremely undesirable because
of added run-time overhead. Moreover, user-level imple-
mentations are limited to applications that do not depend
of some persistent state belonging to the operating system,
per example sockets, shared memory, PIDs, and IP address.
In contrast, a system-level approach can virtualizate these
resources allowing to be checkpointed and then recreated
it later in a different machine totally transparent to the ap-
plication [24]. Further, the user signaling scheme repre-
sents a more complex scenario in which to program because
the use of non-reentrant functions in the signal context can

cause deadlock and instability in the system. For example,
some functions of the C library such malloc() and free() are
not reentrant. On the other hand, the kernel is designed to
be reentrant.

In a user-level implementation incremental checkpoint-
ing is realized by tracing modifications to the process’s state
at the page granularity [27]. The protection of each page in
memory is set to read-only using the mprotect system call
at the beginning of the checkpoint interval. When the appli-
cation attempts a write access the operating system sends a
SIGSEGV signal to the process which can then be used to
track page modifications at user-level. Recently, a novel
technique called Probabilistic Checkpointing [23] allows
the implementation of incremental checkpointing at a finer
granularity. Changes in the application memory are kept
track at the granularity of a memory block whose size can
be much lower than the size of a entire page. A further de-
velopment of this scheme is based on using different block
sizes in order to provide an attractive compromise between
performance and efficiency [1].

4 System-level Implementations

There are two main approaches to checkpointing at
system-level: implemention entirely by the operating sys-
tem, and operating-system implementation supported by
special-purpose hardware. In the former, incremental
checkpointing is implemented by using the page protection
mechanism: when the process tries to access to the write-
protected page it will generate a page fault exception. In
the system-level implementation the exception handler can
keept track of the dirty page. In the user-level implemen-
tation the exception handler delivers the signal SIGSEGV
to the process and the signal handler will keep track of
the page. As stated above, with this technique the changes
in the application memory are traced at the page granular-
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ity. However, in an approach supported by special-purpose
hardware the modifications of the process’s state can be
traced at much finer granularity as it will be explained in
Section 4.2.

4.1 Operating System

In kernel space every data structure relevant to a pro-
cess’s state is readily accessible: these include regis-
ters, memory regions, file descriptors, signal state, and
more. This accessibility enormously simplifies the im-
plementation of checkpoint/restart operations, though re-
quires somewhat more knowledge of kernel internals. On
balance, though, decreased complexity and increased effi-
ciency practically mandate this approach if the goals of ef-
ficiency, transparency, and generality are to be achieved.

There are three main approaches to providing check-
point/restart functionality at system-level: via a system call,
a kernel signal, or a kernel thread.

• System call. This approach entails introducing new
system calls into the operating system to invoke
the checkpoint and restart operations [17, 18, 5].
The common practice is to perform the automatic-
initiation at user-level, that is, the application directly
invoke the systems calls, thus lack of transparency and
flexibility are major concerns.

• Kernel-mode signal handler. This approach is based
on the signaling mechanism offered by the kernel, but
now rather than using a general purpose signal at the
user-level, a new specific signal is added to the ker-
nel for this purpose [6, 36]. The default action of this
signal is checkpoint the application. The advantage
is that the checkpoint is performed at system-level in-
stead of the user-level. Applications may be flexibly
checkpointed by sending this specific signal to the ap-
plication’s process. The signal can be generated via
the kill command line at user-level or at system-level
directly updating the data structure of the process to
be checkpointed to represent that the checkpoint sig-
nal has been sent to the process.

• Kernel thread. Here a kernel thread is created to per-
form the checkpoint/restart activities [40, 13, 32, 24,
11]. The interaction with the kernel thread can be per-
formed at user-level through three possible interfaces:
(1) using the standard file operations like read, write,
and ioctl to communicate with a device file (usually
in /dev); (2), via the /proc pseudo file system using
the read and write operations; or (3), a new system
call that may be invoked by another user-level pro-
cess (like a process monitor) to send the information
of the process to be checkpointed to the kernel thread.
Alternatively, checkpoint operations can be initiated
at system-level using internal mechanisms to start the
kernel thread.

All these approach requires some changing inside the
kernel source code, often it is possible to write most of the
code as kernel module. This will provide portability and
modularity and will help during the development and de-
bugging phases because a module can be loaded and un-
loaded dynamically.
The System Call and the Kernel Mode signal handler ap-
proaces have the advantages of being excecuted in kernel
mode behind the process that has to be checkpointed. In
this way the actual process address space is still the same
of the process running in user mode. In contrast the Kernel
Thread does not have a proper process address space (be-
cause kernel threads always use kernel address, that are the
same among all the processes) and it ueses the page tables
of the task it interrupted, that may not be the process that
has to be checkpointed. If so happened a process address
space switch is required and this may invalidate the TLB
cache and decrease the performance. Of course if the ker-
nel thread interrupts the application it wants to checkpoint
there is no need to switch the address space.
In the first two approaches the application is executing the
checkpointing code (either the system call or the signal han-
dler), so data do not change during the checkpoint. A ker-
nel thread, instead, is a different process and, especially in a
multiprocessor system, it might run in parallel with the ap-
plication that can change some data while the kernel thread
is saving them. In this case a mechanism to stop the ap-
plication is necessary (like removing the application from
its runqueue list) in order to garantee data consistency. An
alternative approach consists in forking the application and
leave it running while the kernel thread saves the data of
the forked process (that is a copy of the parent process) and
then remove it. Moreover, the application may be in an “in-
valid state” (for example it can be waiting for some external
event like and interrupt from a device) and the data can not
be saved if the event is not saved too. This problem affect
either the Kernel Mode Signal Handler but it does not af-
fect the System call mechanism (if the process is not using
some asynchronous function) because in that case is the ap-
plication itself that calls the checkpoint function.

The System call approach requires some change in the
application source code in order to call the checkpoint func-
tion. This will cause lack of tranparency because the ap-
plication has to be changed, recompiled and lnked before
starting. In some case the application source code is not
available and so is not possible to change it. Flexibility is
also not good with this approach: because of is the appli-
cation that calls the system call there is no way to control
when the checkpoint will be take. This may introduce in-
determinism and the global control on a large scale parallel
computing could be hard. The Kernel mode signal handler
method is more tranparent than the system call approach
but the execution of the signal handler is deferred until next
time the kernel will go from Kernel Mode to User Mode
in the process context. Because of there is no way to know
how many process will be runnig in a certain moment in the
system at any time there is no way to know when the sig-
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nal handler will be executed. As in the System Call case,
this approach is linked to the application execution and the
globa behavior could be hard to control in a large cluster.

Another problem is related to the time sharing schedul-
ing algorithm: the process could be suspended by the kernel
because of there is another process with an higher priority
wating for the CPU (the priority is dynamic so it decreases
with the time). Interrupts can also stop the checkpointing.
A new scheduler algorithm could be alleviate this problem
but all the computing processes should have the same (high)
priority so when the data will be saved depends on how
many computing processes are in the system, instead of the
total number of the processes. A kernel Thead is a differ-
ent process that can have a higher priority policy (like the
SCHED−FIFO priority), this shall assure the thread will be
executed as soon as it wakes up and it will run until it has
completed its work. Processes can not interrupt a kernel
thread with this schedule priority if they do not have the
same priority. A new priority can be introduced in order to
be sure nobady will interrupt the kernel thread. Interrupts
can still stop the thread and a mechanism to delay these
events is needed in order to be sure the kernel thread will
never be interrupted.

The development of system-level checkpoint/restart
functionality for Linux is a relatively recent phenomenon,
first appearing around 2001. The first implementations
were deployed primarily to provide process migration in
clusters. Later implementations provided more advanced
functionalities for gang scheduling, hibernation, and fault
tolerance. They are briefly described following.

The original implementations are VMADump [17],
EPCKPT [26], and CRAK [40]. The VMADump (Virtual
Memory Area Dumper) provides checkpoint/restart capa-
bilities to individual Linux processes via system calls. Ap-
plications directly invoke these system calls to checkpoint
themselves by writing the process state to a file descriptor.
Thus, this approach lacks transparency and flexibility. One
advantage of this tool is that the relevant data of the process
can be directly accessed through the current kernel macro
because VMADump is called by the process to be check-
pointed. VMADump was designed as a part of the BProc
project [18] which is an implementation in the static part of
the kernel. This project aims to implement single system
image and process migration facilities in clusters.

In EPCKPT the checkpoint/restart operation is also pro-
vided through system calls and is very similar to the
VMADump scheme; like the VMADump scheme EPCKPT
is also implemented in the static part of the kernel.
EPCKPT provides more transparency than VMADump be-
cause the process to be checkpointed is identified by the
process ID (pid) rather than directly by the current macro.
A new default kernel signal is created to invoke the check-
point operation. EPCKPT provides some command line
tools to user-initiate the checkpoint operations. Applica-
tion must be launch via one of this tool in order to initialize
the checkpoint and trace some information about the appli-
cation’s execution during run time, thus incurring undesir-

able overhead. Then, checkpoints are made via another tool
passing as parameter the process’s pid corresponding to the
application to be checkpointed.

CRAK [40] is a process migration utility implemented
as a kernel thread. Unlike the previous schemes CRAK
is a kernel module, hence provides more portability. To
communicate with the kernel thread CRAK creates a new
device in /dev and the ioctl device-file interface is used.
The pid of the application to be checkpointed is passed as
parameter in the ioctl call. The process migration opera-
tion can also be disabled by users. In this case, it stores
the process’s state locally or remotely without performing
a process migration. A later development of this tool is
ZAP [24]. ZAP improves on CRAK by providing a virtu-
alization mechanism called Pod to cope with the resource
consistency, resource conflicts, and resource dependencies
that arise when migrating processes between machines with
different persistent states, as commented earlier in Section
3. However, that virtualization introduces some run-time
overhead because system calls must be intercepted.

Other checkpoint/restart mechanisms have been subse-
quently developed, such as the BLCR, the Berkeley Lab’s
Linux Checkpoint/Restart project [11]. This is a kernel
module implementation that, unlike prior schemes, also
checkpoints multithreaded processes. Like CRAK it is
based on kernel threads and uses the ioctl device-file in-
terface to specify the pid’s process to be checkpointed. But
BLCR needs a initialization phase to register a signal han-
dler for an available general purpose signal and also re-
quires to load a shared library, hence it is not totally trans-
parent. Also, users can specify whether the process state
is saved locally or remotely via the ioctl system call. A
further development of this tool, LAM/MPI [32], allows
checkpointing of MPI parallel applications. But, although
it is completely transparent to the application, is not trans-
parent to the MPI library because some MPI functions must
be modified in order to automatize the initialization phase
of the BLCR scheme.

Another checkpoint/restart package is UCLiK [13]
which inherits much of the framework of CRAK, but ad-
ditionally introduces some improvements like restoring the
original process ID and file contents, and identifies deleted
files during restart. Process states are saved only locally.

CHPOX [36] is another checkpoint/restart package very
similar to EPCKPT, but is implemented as a kernel module
that stores the process state locally. It creates a new en-
try in the /proc pseudo file system and also a new kernel
signal (SIGSYS). Prior to checkpoint applications must be
registered sending the pid to the new created entry in /proc.
Then, checkpoints are initiated by sending the new signal
to the process. This package has been tested and tuned as
part of the MOSIX project [3].

PsncR/C [22] is another checkpoint/restart package for
SUN platforms. It is a kernel thread implemented as a ker-
nel module which saves process state to local disk. A new
entry in /proc is created and all checkpoint operations are
realized via the iotcl interface. Unlike other packages it
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TABLE 1. Comparison of Linux System-level Checkpoint/Restart Packages
Name Incremental Transparency Stable Initiation kernel

checkpointing storage module

VMADump no no local,remote automatic no
BPROC no no none automatic no
EPCKPT no yes local,remote user no
CRAK no yes local,remote user yes
UCLik no yes local user yes

CHPOX no yes local user yes
ZAP no yes none user yes

BLCR no no local,remote user yes
LAM/MPI no no local,remote user yes
PsncR/C no yes local user yes

Software Suspend no yes local user no
Checkpoint no no local automatic no

does not perform any data optimization to reduce the check-
point data size, so all of the code, shared libraries, and open
files are always included in the checkpoints.

Software Suspend [6] is a hibernation mechanism im-
plemented in the official kernel source code. Software Sus-
pend provides a script to start this operations at user-level.
A new default kernel signal is implemented to initiated
the hibernation which is delivered to every process in the
system to freeze their execution. When all processes are
stopped the image of the RAM is saved on the swap par-
tition in the local disk. After that it powers down the sys-
tem. At start-up the image is restored from disk and all the
process are restarted. Additionally, it also provides some
standby functionality by saving the image to memory rather
to disk.

Finally, there is a recent proposal for checkpoint/restart
of multithreaded processes that we will refer to as Check-
point [5]. Checkpoint/restart operations are provided
through system calls implemented in the kernel static part.
The innovation of this approach is that the checkpoint oper-
ations are performed by a thread running concurrently with
the application. The fork mechanism is used to guarantee
the consistency of data between the thread and the applica-
tion process. However, this approach is not transparent—it
requires direct invocation of system calls.

Table 1 summarizes the main features of these mecha-
nisms. As can be seen, most provide full transparency—
the application source code need not be modified, recom-
piled, or relinked. By counterpart, most of them are totally
transparent to the kernel static part. They are implemented
as a kernel module which increases portability.

Most of the implementations provide a user-initiation
checkpointing that relegates the management of the check-
point operations to system administrators. Thus, they pro-
vide rudimentary flexibility and none self-managing ca-
pabilities. The common practice to provide flexibility is
by integrating the user-initiation operations within a batch
management software such as the LSF [9] that initiates the

checkpoint operations automatically. This software resides
in a layer on top of the operating system providing a set
of tools to allocate, monitor, and manage the networked re-
sources in a cluster. In addition, some self-management ca-
pabilities are recently incorporated in those softwares [8].
Although, these tools provide flexibility and self-managing
capabilities at user-level, we believe that the lack of these
capabilities at system-level is a limiting factor to enable au-
tonomic computers because two main reasons: (1) they are
relegated to systems that support this special software re-
ducing the applicability of autonomic computers; and (2)
reduces the scalability and fault tolerance of autonomic
computers because the management is centralized to this
software.

In addition, most provide only rudimentary support for
fault tolerance. Most store the checkpoint locally instead of
remotely, thus checkpoint data cannot be retrieved in case
of a failure of the machine. Fault tolerance is limited to the
case of restarts in the event of power outages or reboots.

Further, incremental checkpointing has not yet been im-
plemented in any of the packages. It has been implemented
at system-level in other operating systems like Genesis [30]
and V-System [12], but as far as we know, there is no im-
plementation of incremental checkpointing for Linux up to
now. Since Linux is being widely deployed in large scale
clusters1, we argue that this feature would be desirable to
implement in a checkpoint/restart package for that operat-
ing system.

4.2 Hardware

Checkpointing may be supported by purpose-designed
hardware. As with operating-system-level implementa-
tions, this approach can be entirely transparent to users. But
hardware-level checkpointing is of limited importance pre-
cisely because it relies on custom hardware, counter to the
trend of building clusters from commodity components.

1See www.top500.org.
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Hardware-based schemes typically implement incre-
mental checkpointing at much finer granularity than is done
at the operating system level: modifications of the address
space of the application are traced at the granularity of
cache lines. There are two recent proposals for hardware-
supported checkpointing for shared-memory multiproces-
sors, Revive [29] and Safetynet [34]. In Revive checkpoint-
ing is supported by modifications of the hardware related
to the directory controller of the machine. In comparison,
Safetynet requires more hardware resources than Revive.
The processor’s caches must be modified, and it also re-
quires an additional buffer to store the checkpointing data.

5 Conclusions

We have surveyed the current state of the art of check-
point/restart mechanisms, identifying the significant advan-
tages and disadvantages of each.

Unlike user-level schemes, those at operating system
level can provide the flexibility, transparency, and effi-
ciency required to support the envisioned paradigm of au-
tonomic computing, even on commodity hardware. The
checkpoint/restart functionality implemented at the operat-
ing system can be automatically invoked without user inter-
vention and can be integrated with the system management
tools. We believe that the automatic-initiated functional-
ity at system-level brings new management capabilities in
large scale computers. In addition, such an implementation
is being considered as a natural factorization of concerns
which is applicable on a per-process, per-node basis, and is
intended to be a truly general-purpose building block for a
system-wide solution for cluster-like parallel machines. It
is applicable to all applications without requiring modifica-
tions to source code.
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