
A Real Bottom-Up Operating Systems Course

Daniel P. Bovet∗† Marco Cesati∗‡

October 6, 2000

1 Introduction

The “Operating Systems” course is included in the Computer Science under-
graduate program of almost all universities. It is quite surprising, however,
that teachers rarely agree on what should be taught in such courses. Actu-
ally, there even isn’t a widely agreed definition of what an operating system
is.

One of the broadest definitions we ever seen has been given in [2]:

The operating system is the collection of functions which make
available computing services to people who require them.

Therefore, the operating system must fill the gap between the computer
and the services required by the people using it. However, what kind of
services should we consider? Isn’t writing a document with a word processor
a computing service that people require? And what about playing a strategy
game, or browsing the Web?

Much more restricted definitions of operating system have been given.
For example, in [6] we read:

The purpose of an operating system is to provide an environment
in which a user can execute programs. The primary goal of an

∗Department of Computer Science, Systems, and Industrial Engineering, University of
Rome “Tor Vergata”, via di Tor Vergata 110, I-00133, Rome, Italy.
†E-mail: bovet@uniroma2.it
‡E-mail: cesati@uniroma2.it

1



operating system is thus to make the computer system convenient
to use. A secondary goal is to use the computer hardware in an
efficient manner.

Most Operating Systems courses implicitly adopt this definition or a sim-
ilar one, because it allows teachers to stick to a well-defined set of canonical
topics. Actually, two kinds of operating systems courses may co-exist: one
addressed to system administrators and one to system programmers. In the
first case, the course should teach how to make use of the many existing
features inside an OS, how to tune it up properly, and how to set up proper
environments for the users. In the second case, the course should explain how
the functions are implemented and which are the main issues and trade-offs
to be considered while implementing them.

In fact, the first kind of course is seldom included in an undergraduate
Computer Science program: this is likely due to the fact that operating
systems are quite different from each other, thus the experience gathered
on one of them, say Sun Microsystem’s Solaris, cannot be readily transfered
to another one, say IBM’s OS/390. We thus concentrate in the rest of this
paper on the second type of course, the standard elective fourth year course
of an Undergraduate program in Computer Science.

2 Basic approaches for teaching an OS course

Three basic approaches have been adopted so far:

• traditional course based on a valid textbook;

• use of simulators or toy operating systems that allow students to ex-
periment and make changes;

• study the kernel of a real operating system.

A detailed analysis of the first approach has recently been made by [2],
so we won’t spend time discussing it.

The second approach deserves some additional comments. The venera-
ble book by Madnick and Donovan [4] was likely the first one to include a
simulator of a very primitive OS (it was a punched card simulator of a sim-
plified version of IBM’s OS/360). In some sense, also the book by Brinch

2



Hansen [3] included a simulated operating system (the description in concur-
rent Pascal allowed the simulator to be run on any system with a concurrent
Pascal run-time environment). The Tanenbaum book [5] is, at the best of
our knowledge, the only one that provides the source code for a true operat-
ing system, and not a simulated one (the toy OS called Minix has proved to
be a very effective teaching tool: as it is well known, Linus Torvalds started
working on Linux after taking a course based on Tanenbaum’s book).

Until recently, the third approach has not been very popular. In fact,
teaching a real operating system requires a laboratory where students can
experiment changes to the kernel and reboot the system as many times as
they want. Furthermore, an exhaustive documentation of the kernel and sys-
tem utilities must be available to the students. With very few exceptions, the
study of real operating systems like Unix has been confined to postgraduate
courses and to research projects.

Things have changed dramatically in the last few years and several un-
dergraduate Computer Science programs are now offering Operating System
courses based on real case studies. We think that there are two main reasons
for this change:

• Hardware is becoming cheaper and cheaper and most departments can
offer laboratories with tens of powerful computers. Moreover, students
usually own personal computers that can be used to work on the OS
term projects.

• Several Open Source operating systems for personal computers are now
available. They are fully fledged operating systems that often success-
fully compete with commercial ones.

3 The OS course at Rome “Tor Vergata”

We began planning an undergraduate course on Operating System at the end
of 1996. Our students were at the third year of a five-year Computer Science
degree offered by the School of Engineering at the University of Rome “Tor
Vergata”. The schedule included fourty 90-minute lectures and about ten
lab sessions. Our objective was to teach a course based on the study of the
source code of a real OS and to assign term projects consisting of making
changes to the kernel and performing tests on the modified version. We were
encouraged by the fact that PCs were becoming quite cheap and the source

3



code of several operating systems was available at virtually no cost. By that
time we were not aware of other similar courses so we had to start from
scratch.

As a first step, we decided that the course should be focused on how
the operating system exploits the hardware of the computer system: modern
microprocessors include a lot of features that enable the OS to operate in an
efficient and safe way. We thought thus crucial to teach how the OS builds
on these hardware features in order to provide a friendly environment to
the user. We also planned to cover all topics commonly found in operating
system textbooks, even if in a non-traditional way.

The second step was to select the OS, among those available as Open
Source, to be studied in classrooms. We selected Linux because it was
already raising considerable interest among experts and because its “open
group” philosophy matched quite well a university environment: for exam-
ple, interested students could follow in USENET newsgroups the sometimes
heated discussions among developers.

Unfortunately, suitable documentation was missing. A real life OS is hard
to understand and students need plenty of information in order to grasp the
general architecture and the finer details. In particular, we would like our
students to know which are the main algorithms and data structures used
by Linux, which are the assembly language and C functions that implement
the algorithms and, last but not least, what kind of support does the IBM-
compatible PC hardware offers to the OS. We thus decided to write lecture
notes for our students.

A last decision was to design our course following a bottom-up approach.
This is the most natural way for us to describe how hardware and operating
system interact. However, ordering course topics following a bottom-up ap-
proach was not straightforward and required a lot of efforts and refinements
over the past three years. We shall detail in the next section the existing
dependencies among topics and we shall present our current preferred order.

The effort involved in carrying out our project was considerable. In the
Spring Semester of 1997 we taught a course on Operating Systems based on
Linux 2.0 and we prepared course notes for our students about a few critical
features of Linux like task switching and task scheduling. We continued
along this line in the following years moving on to the Linux 2.1 development
version and later to the Linux 2.2 stable version. Starting from our lecture
notes, which were becoming larger and larger, we wrote a whole book on the
Linux kernel internals [1].

4



Figure 1: A layered lists of hardware devices inside a computer

4 Course organization

As stated earlier, our OS course should teach how an OS exploits computer’s
hardware. Obviously, the course cannot afford a detailed and in-depth discus-
sion of all hardware devices included in modern computer systems. However,
we select a few hardware devices among those always found in a PC and we
teach how these devices are handled by the OS.

What hardware devices should we consider? Explaining how the kernel
handles a sound card may be interesting, but it doesn’t really teach anything
fundamental about a modern operating system. Conversely, explaining how
the kernel handles a microprocessor, the system RAM, or a disk drive gives
insight to the internal structure of a modern operating system. In fact, some
hardware devices are crucial (all computer systems have a CPU), while others
are less important or even missing at all.

Figure 1 lists some hardware devices commonly found on a personal com-
puter. The most important device is the CPU, which is thus placed in the
center. Next we identify a few crucial devices, like the system dynamic
memory (RAM), the high-speed static memory (hardware cache), the Pro-

5



grammable Interrupt Controller (PIC), the Programmable Interrupt Timer
(PIT), or the Real Time Clock (RTC). These devices are very important,
since they provide crucial services to the computer system. Finally, there are
plenty of additional devices, like disk drives, serial and parallel ports, Net-
word Interface Cards (NIC), Universal Serial Bus controllers (USB), SCSI
devices, and so on. While some of them may be quite important (e.g., disk
drives), they are not really essential: a computer system can be built without
them.

When planning our OS course we sticked to the following rule:

Course topics that are somewhat related to most important hard-
ware devices (inner hardware devices in Figure 1) should precede
course topics related to less important hardware devices (outer
hardware devices in Figure 1).

In some sense, we start from the center of the circle in the figure and we
move towards the outer boundary. (By the way, our course doesn’t cover all
hardware devices shown in figure.)

A modern operating system kernel like Linux cannot be considered as a
simple handler of the hardware devices included in the personal computer.
The kernel creates and manages the multitasking environment in which sys-
tem utilities and user applications run, it enforces system protections on
processes and files, and so on. Thus, many course topics are not related to
specific hardware devices, and we need a second general rule:

Any course topic X should be introduced after the topics whose
comprehension is crucial to fully understand X.

While apparently trivial, this rule is not so easy to apply. The kernel of
a modern operating system is a highly-customized collection of programs,
which mutually interact and cooperate. Dissecting a program or kernel func-
tion may not be so easier, and often circular dependencies among OS topics
are difficult to avoid. From a practical point of view, it could be easier to
stick to the following rule of thumb:

Course topics should be ordered in such a way to minimize the
forward references to arguments yet to be explained.

6



Figure 2: Main dependencies among OS course topics

7



Figure 2 illustrates the most important dependencies among the topics
covered in our OS course. For instance, “CPU architecture” is introduced
before “Processes”, because we cannot fully explain what a process is without
referring to notions like the execution context of a program, that is, the
contents of the CPU registers and the memory locations used by the program.

Let us detail our current preferred order of the OS course topics. We
briefly explain what arguments are covered, and the dependencies with pre-
viously introduced topics.

1: CPU architecture. We introduce the overall architecture of a micro-
processor of the Intel 80x86 family, and we explain in detail how dynamic
memory is addressed (segmentation and pagination). We also introduce the
“User Mode” and “Kernel Mode” levels of execution.

Dependencies. nothing

2: Processes. We give a formal definition of process, and we illustrate how
processes are handled by Intel microprocessors. In particular, we describe
how Linux performs a context switch, that is, how it replaces a running
process with another one.

Dependencies. (1) The process is a software abstraction, ultimately based
on the notion of “execution context of a running program”, so a clear under-
standing of the CPU architecture is required.

3: Interrupts and exceptions. We explain how a process may divert from
its normal execution flow to execute high-priority functions handling hard-
ware devices (interrupts) or coping with anomalous conditions (exceptions).
We also discuss the role of the Programmable Interrupt Controller (PIC).

Dependencies. (2) Students must understand memory addressing and
how CPUs keep track of the execution flow of a process. (3) The notion of
process is also required, since interrupts and exceptions are handled in the
execution context of the currently running process.

4: Timing. We describe how Linux exploits the features offered by the Real
Time Clock (RTC) and by the Programmable Interrupt Timer (PIT) to keep
track of elapsed time and to implement software timers.

Dependencies. (4) Time book-keeping is delegated to a special interrupt
generated by the PIT, so students must know how interrupts are handled.

8



(5) Timing is also crucial for time-sharing, thus the notion of process should
be clearly understood.

5: Memory management. We introduce the main algorithms used by
Linux to manage the physical memory (RAM) in such a way to reduce mem-
ory fragmentation and to enhance system performances.

Dependencies. (5) Students must be aware of how the microprocessor
handles the physical memory. Also, they must know how the static memory
(hardware cache) works, so that they can understand what Linux does to
fully make use of it.

6: Process address space. We describe how Linux associates an address
space to each process in order to catch addressing errors of User Mode ap-
plications. We also explain how to allocate memory “on demand” and the
“copy on write” technique.

Dependencies. (7) Of course, the notion of process is required. (8) Also,
students must know how physical memory is effectively allocated to a process.
(9) Exceptions should have been already introduced in order to explain how
“allocation on demand” and “copy on write” work. (10) Finally, students
should understand the memory access protection mechanisms offered by the
CPU.

7: System calls. We explain how User Mode applications may require
services to the kernel by means of system calls.

Dependencies. (11) Linux implements system calls for the PC architecture
as program-triggered exceptions. (12) Students should clearly understand the
process-kernel model. (13) Discussing how the kernel protects itself against
buggy addresses passed as parameters of system calls also requires to under-
stand the protection mechanisms offered by the CPU.

8: Signals. We introduce Unix signals and their implementation on Linux.

Dependencies. (14) Every signal is a sort of message sent to a specific
process, thus the process notion is definitely required. (15) Students should
already know what system calls are, so that the kill() system call can be
easily introduced.

9: Scheduling. We discuss in detail the process scheduling algorithm of
Linux.

9



Dependencies. (16) Of course, we cannot explain scheduling without hav-
ing introduced the notion of process in advance. (17) Scheduling is related
to the time-sharing mechanism; we must also teach how the time quantum
of execution assigned to each process affects system performances. (18) Ex-
plaining how the scheduling algorithm can be tuned requires to introduce
some system calls like nice().

10: Kernel synchronization. We discuss all kind of concurrency problems
and race conditions both for uniprocessor systems and multiprocessor ones,
and we explain how the kernel defends itself against them.

Dependencies. (19) The most important source of potential data corrup-
tion inside the kernel is due to interrupt handlers, which are executed in a
asynchronous fashion at unpredictable time instants. (20) Time-sharing may
also cause data corruption, because several processes may end up using the
very same system resource, thus acting on the same kernel data structure.
(21) As usual, protection against race conditions is ultimately enforced by
hardware features offered by the CPU. Moreover, students should understand
the problems induced by per-processor hardware caches in multiprocessor
systems.

11: Virtual File System. We describe the Virtual File System, which
can be considered as an interface between the application’s requests and
the various filesystem types supported by Linux. Focus is placed on disk-
based filesystems; notice that we left the inner layers of hardware devices in
Figure 1, and we are moving towards the outer layer.

Dependencies. (22) In order to explain the role of the VFS, we refer to
User Mode processes as actors that place requests to the kernel.

12: I/O devices. We give a general overview of how I/O hardware devices
are handled by Linux. We discuss how the kernel may interact with them,
and how it provides some special “device files” that act as communication
channels between User Mode applications and the hardware devices. We
also explain the special handling deserved by Linux to the block devices
(hard disks).

Dependencies. (23) Students must clearly understand interrupts, because
most hardware devices make extensive use of them. (24) In order to explain
how device files work, we should have introduced the VFS in advance. (25) A
few references to the internal CPU architecture are also required in order to

10



explain how the kernel may grant to selected processes direct access to specific
hardware devices. (26) Finally, most device drivers make use of kernel timers
and other time-out mechanisms.

13: Disk caches. We discuss the algorithms that allow Linux to make use
of dynamic memory in order to avoid slow accesses to the disks.

Dependencies. (27) Students must know why disk accesses are inherently
slow, so disk devices should have already been introduced. (28) Moreover,
most cached disk data belongs to disk files, so the VFS should have already
been understood.

14: Regular files. We detail the kernel operations triggered by a User
Mode application that is accessing a regular file on disk.

Dependencies. (29) Of course, the teacher should have already explained
the role of the VFS as interface between the application and the low-level
block device driver. (30) Students should have understood the role of the
disk caches, as well as (31) how the physical disk drive is accessed. (32) Ap-
plications normally make use of system calls like read() and write() to
access files; (33) however, files can also be memory mapped in the process
address space.

15: Memory reclaiming. We describe several techniques adopted by the
Linux kernel to preserve a minimal amount of free dynamic memory: swap-
ping, flushing and shrinking of disk caches, and shrinking of memory caches.

Dependencies. (34) Swapping depends on a hardware feature of the CPU,
that is, the possibility to mark some page of memory as “not present”.
(35) Swapping also concerns transferring pages of dynamic memory on disk
devices. (36) It is obvious that disk caches should have already been in-
troduced before explaining how Linux reduces their size in order to reclaim
free memory. (37) Of course, students must be aware of how Linux manages
free memory. (38) Finally, the swapping algorithm select a process to be
penalized according to its memory usage, thus a clear understanding of the
process address space is required.

16: Ext2 filesystem. We cover the implementation details of the standard
Linux filesystem, considering both the disk data structures and the dynamic
memory data structures.

11



Dependencies. (39) The VFS interface between the Ext2 filesystem and
the application’s file access requests must have already been understood.
(40) References are also made to disk device drivers (41) and to the disk
caches. (42) Finally, students will benefit from the previous discussion of
how regular files are effectively accessed.

17: Process communications. Many kinds of inter-process communica-
tions are described: pipes, FIFOs, IPC messages, IPC semaphores, and IPC
shared memory segments.

Dependencies. (43) Many inter-process communication mechanisms are
file-based, so the VFS topic should have already been covered. (44) Of course,
students must know what processes are. (45) Finally, explaining IPC shared
memory segments requires a clear understanding of the process address space.

18: Program executions. We explain how a new program is executed,
that is, what happens when a process invokes the execve() system call.

Dependencies. (46) Executing a program essentially means changing the
execution context of a process. (47) Programs are stored in executable file,
so students should know what a Unix file is. (48) Students should also under-
stand what system calls are, because the discussion is focused on execve().
(49) When Linux rebuilds the execution context of a process for a new pro-
gram, it releases the dynamic memory previously allocated to the process
and builds a fresh, empty process address space.

5 Conclusion

Several classic Operating System textbooks claim to follow a bottom-up ap-
proach. As noticed in [2], a kind of average canonical order of course topics
is the following: Processes, Scheduling, Concurrency, Memory Management,
Deadlock, Input/Output and Devices, File Management, Multiprocessing
and Distributed Systems, Protection and Security.

This approach works out quite well when presenting a “virtual” kernel
that is hardware-independent. It doesn’t work however when trying to de-
scribe a “real” kernel. The alternative course topics order proposed in this
paper may be of interest to all those who want to plan an Operating Systems
course based on the source code of a successfull, modern kernel.

12



References

[1] D. P. Bovet, M. Cesati. Understanding the Linux kernel. O’Reilly & Co.,
2000.

[2] R. A. Creak, R. Sheehan. A Top-Down Operating System Course. Oper-
ating Systems Review 34 (3), ACM, July 2000, 69–80.

[3] P. Brinch Hansen. Operating System Principles. Prentice-Hall, 1973.

[4] S. E. Madvick, J. J. Donovan. Operating Systems. McGraw-Hill, 1974.

[5] A. S. Tanenbaum. Operating Systems—Design and Implementation.
Prentice Hall, 1987.

[6] A. Silberschatz, P. B. Galvin. Operating System Concepts. Addison-
Wesley, 4th edition, 1994.

13


